On-line Parameter Estimation in General State-Space Models using a Pseudo-Likelihood Approach
نویسندگان
چکیده
State-space models are a very general class of time series capable of modeling dependent observations in a natural and interpretable way. While optimal state estimation can now be routinely performed using SMC (sequential Monte Carlo) methods, on-line static parameter estimation largely remains an unsolved problem. In Andrieu and Doucet [2003] it was proposed to use a pseudo-likelihood approach. This pseudo-likelihood can be optimised directly using a stochastic gradient algorithm, but we focus on an on-line Expectation-Maximization (EM). We present here novel simple recursions that allow us to estimate confidence intervals on-line and develope new theoretical results concerning the pseudo-likelihood estimate. More precisely we characterise the loss of efficiency compared to that of the maximum likelihood estimate, and also quantify the bias of the estimate in cases where the pseudo-likelihood needs to be approximated. We show in a tractable situation requiring no Monte Carlo simulation that these theoretical results accurately predict performance, pointing to their practical relevance.
منابع مشابه
Online State Space Model Parameter Estimation in Synchronous Machines
The purpose of this paper is to present a new approach based on the Least Squares Error method for estimating the unknown parameters of the nonlinear 3rd order synchronous generator model. The proposed method uses the mathematical relationships between the machine parameters and on-line input/output measurements to estimate the parameters of the nonlinear state space model. The field voltage is...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملError Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network
State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...
متن کاملLatent Parameter Estimation in Fusion Networks Using Separable Likelihoods
Multi-sensor state space models underpin fusion applications in networks of sensors. Estimation of latent parameters in these models has the potential to provide highly desirable capabilities such as network self-calibration. Conventional solutions to the problem pose difficulties in scaling with the number of sensors due to the joint multi-sensor filtering involved when evaluating the paramete...
متن کاملA Reduced Form Representation for State Space Models
Estimating structural state space models with maximum likelihood is often infeasible. If the model can be expressed as a reduced form vector-autoregression (VAR) in the observable data, then two step techniques such as minimum chi-square estimation can reliably recover structural parameter estimates. However, macroeconomists cannot always rely on the existence of a VAR reduced form – as is ofte...
متن کامل